❓Как обнаружить и смягчить эффект популярности (popularity bias) в рекомендательной системе
Алгоритмы рекомендаций часто усиливают популярность уже популярных видео — их всё чаще показывают, в то время как новые или нишевые остаются незамеченными. Это создает эффект «богатые становятся богаче».
🔍 Как обнаружить
Посмотрите на логи рекомендаций — если небольшая доля контента получает основную массу показов, это тревожный сигнал. Обычно это «голова» распределения (head), тогда как «хвост» (long tail) игнорируется.
🛠Методы смягчения
• Нормализация метрик (например, watch-time) с учетом числа показов — чтобы не усиливать положительную обратную связь.
• Поддержка длинного хвоста: в механизме отбора кандидатов добавить специальную логику, продвигающую менее популярные видео.
• Умное переупорядочивание (re-ranking): резервировать часть позиций в выдаче для менее популярных видео.
⚠️Важно
• Слишком сильное наказание популярных видео может снизить удовлетворенность пользователя.
• Нельзя наказывать все тематики одинаково: специализированный контент может иметь честно низкие метрики, не из-за предвзятости, а из-за ниши.
❓Как обнаружить и смягчить эффект популярности (popularity bias) в рекомендательной системе
Алгоритмы рекомендаций часто усиливают популярность уже популярных видео — их всё чаще показывают, в то время как новые или нишевые остаются незамеченными. Это создает эффект «богатые становятся богаче».
🔍 Как обнаружить
Посмотрите на логи рекомендаций — если небольшая доля контента получает основную массу показов, это тревожный сигнал. Обычно это «голова» распределения (head), тогда как «хвост» (long tail) игнорируется.
🛠Методы смягчения
• Нормализация метрик (например, watch-time) с учетом числа показов — чтобы не усиливать положительную обратную связь.
• Поддержка длинного хвоста: в механизме отбора кандидатов добавить специальную логику, продвигающую менее популярные видео.
• Умное переупорядочивание (re-ranking): резервировать часть позиций в выдаче для менее популярных видео.
⚠️Важно
• Слишком сильное наказание популярных видео может снизить удовлетворенность пользователя.
• Нельзя наказывать все тематики одинаково: специализированный контент может иметь честно низкие метрики, не из-за предвзятости, а из-за ниши.
However, analysts are positive on the stock now. “We have seen a huge downside movement in the stock due to the central electricity regulatory commission’s (CERC) order that seems to be negative from 2014-15 onwards but we cannot take a linear negative view on the stock and further downside movement on the stock is unlikely. Currently stock is underpriced. Investors can bet on it for a longer horizon," said Vivek Gupta, director research at CapitalVia Global Research.
The messaging service and social-media platform owes creditors roughly $700 million by the end of April, according to people briefed on the company’s plans and loan documents viewed by The Wall Street Journal. At the same time, Telegram Group Inc. must cover rising equipment and bandwidth expenses because of its rapid growth, despite going years without attempting to generate revenue.
Библиотека собеса по Data Science | вопросы с собеседований from br